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Abstract
We prove that a wide class of two-level boson systems interacting through
k-body forces is integrable in the semiclassical limit irrespective of the value
of the parameters of the model. This class of models includes number-
conserving Hamiltonians, and interactions which do not conserve the particle
number. Applications to two-component and atom–molecule Bose–Einstein
condensates at zero temperature as well as to the bosonic k-body embedded
ensembles of Gaussian random matrices in the dense limit are discussed.

PACS numbers: 05.45.Mt, 05.30.Jp, 31.15.Gy, 45.50.Jf

Exactly solvable models play an important role in all branches of physics. In some instances,
they provide the basic understanding upon which we build up intuition. This is the philosophy
behind mean-field theories. In others, they are an effective tool to test the approximate methods
used in more elaborated descriptions of the physical situation. In this case, having at hand
an exact solution permits us to understand the convergence properties of the approximations
involved. To quote some examples, we mention the two-level Lipkin model [1], the paring
interaction [2] and the Calogero–Sutherland Hamiltonian [3]. Though the connection is not
so clear, many—if not all—of the exactly solvable models are integrable. That is, there are as
many independent integrals of motion as degrees of freedom in the system. Indeed, new exact
and integrable pairing-like models have been recently discovered [4–6]. For obvious reasons
any non-trivial model displaying integrability is of broad interest, in particular if the model
has the least number of restrictions (maximum freedom) on the specification of the parameters
that define it. In this letter, we prove integrability of a large class of interacting two-level
boson systems, with no assumptions on the parameters defining the interaction (except for
the Hermiticity of the Hamiltonian) and weak restrictions on the specific type of interaction.
We show that these types of models, in the semiclassical limit, correspond to systems of two
degrees of freedom.

Consider n spinless bosons distributed on l = 2 single-particle states interacting through a
potential that couples up to k bodies (k � n). We shall refer to k as the rank of the interaction.
For simplicity in the presentation we shall consider the case k = 2 first, which is the most
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interesting one from the physical point of view, and later generalize the results. The most
general Hamiltonian describing this situation, expressed in the number representation on a
second quantized form, is given by

Ĥ =
∑

α

εαb†
αbα +

∑

α�β

γ�δ

vα,β;γ,δb
†
αb

†
βbγ bδ. (1)

Here, b†
α creates a boson in the single-particle level α (α = 1, 2) and bα destroys it. These

operators obey the usual bosonic commutation rules. The single-particle energies are denoted
by εα and the (Hermitian) two-body matrix elements are vα,β;γ,δ . Considering for simplicity
only real coefficients, the Hamiltonian of equation (1) has eight parameters that defines it.
From these, the two single-particle energies εα define the energy range and scale; therefore,
apart from the scale and the zero of the energy, Ĥ is defined through six independent (real)
parameters. Clearly, the Hamiltonian Ĥ conserves the number of particles n in the system, i.e.,
Ĥ commutes with the particle number operator n̂ = ∑

α b†
αbα. The Hilbert space dimension N

is given by N = n+1. Hamiltonians of the type of equation (1) are currently under investigation
in the context of two-component Bose–Einstein condensates (BEC) at zero temperature [7, 8].

One possibility of obtaining information on the dynamical behaviour of Hamiltonians
of the form of Ĥ is to consider their semiclassical limit. Being bosons, the elementary
single-particle excitations can be assumed of the type of the harmonic oscillator. In atomic
and molecular spectroscopy, algebraic Hamiltonians of the type Ĥ are typically written in
a symmetric form with respect to the ordering of the creation and annihilation operators.
This permits the zero-point energy to be defined consistently, which in turn allows for an
energy-to-energy comparison of the classical and quantum systems in a systematic way.
Equation (1) is manifestly non-symmetric with respect to the ordering, but it can be brought
to a symmetric form by exploiting the commutation relations of the bosonic creation and
annihilation operators, typically in the form b†

αbβ = (
b†

αbβ + bβb†
α − δα,β

)/
2. Following

[9, 10], once the quantum Hamiltonian Ĥ is expressed in a symmetric form, the corresponding
classical Hamiltonian is obtained using Heisenberg correspondence relations [11]

b†
α −→ I 1/2

α exp(iφα) bα −→ I 1/2
α exp(−iφα) (2)

where φα is an angle and Iα is its canonically associated momentum. These variables
correspond to the action-angle variables of the harmonic oscillator, and not to the action-
angle variables of Ĥ . Using Heisenberg relations yields a classical Hamiltonian with a
zero-point energy correction, which we denote below as E0. This constant term permits a
direct comparison between the classical and quantum energies, and corresponds to having all
elementary (harmonic) excitations set to 1/2.

Using equations (2) in the symmetrized form of the Hamiltonian Ĥ , the classical
Hamiltonian H attains the generic form

H(I1, I2, φ1, φ2) = H0(I1, I2) + V (I1, I2, φ1, φ2) − E0. (3)

The interaction has been written separating an angle-independent part H0, which is obviously
fully integrable, the residual interaction V which also depends upon the angle variables, and
the zero-point energy E0. These terms are explicitly given by

H0 = ω1I1 + ω2I2 + v11,11I
2
1 + v12,12I1I2 + v22,22I

2
2 (4)

V = 2[ω12 + v11,12I1 + v12,22I2](I1I2)
1/2 cos(φ1 − φ2) + 2v11,22I1I2 cos 2(φ1 − φ2) (5)

E0 = (2ε1 + 2ε2 − 3v11,11 − v12,12 − 3v22,22)/4. (6)
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In equations (4) and (5), we have introduced ω1 = ε1 −2v11,11 −v12,12/2, ω2 = ε2 −2v22,22 −
v12,12/2 and ω12 = −(v11,12 + v12,22).

Some important points of this classical system are worth noting. First, the classical–
quantum comparison is semiclassical because Schrödinger quantization (φ → φ, I →
−ih̄∂/∂φ) of general coordinates is semiclassical, and the order of the harmonic oscillator
action and angle variables is not specified. We refer the reader to [9] where this issue is
extensively discussed. Secondly, the number of degrees of freedom of the classical system
corresponds to the number of single-particle levels l, which in the present case is two. Indeed,
by considering the second quantized form of the Hamiltonian, emphasis is put on the number
of field excitations, which are of harmonic oscillator type. As usual in these cases, the
semiclassical limit is attained in the limit N → ∞, which in this case is given in terms of the
number of particles n.

From equation (5) we observe that V depends only upon the angle variables through the
combination φ1 − φ2, and consequently, the same angle dependence appears in the classical
equations of motion. This angle relation corresponds to a 1:1 resonance. Clearly, this term is
invariant under translations of the angle variables, and associated with this symmetry there is
a constant of motion. We exploit this by performing a canonical transformation to new angles
χ and ψ , and their canonically conjugated momenta K and J respectively. The canonical
transformation is defined by the generating function W = Kφ1 + J (φ2 − φ1). Hence

I1 = K − J I2 = J (7a)
χ = φ1 ψ = φ2 − φ1. (7b)

From equations (7) it follows that the new Hamiltonian H ′ depends only on the new angle
variable ψ = φ2 − φ1. Therefore, χ is a cyclic coordinate in H ′ and consequently its
canonically-conjugated momentum K is a constant of motion. Equations (7a) imply that
K = I1 + I2. Constants of motion of this type correspond to the polyads of algebraic
Hamiltonians in molecular physics [9, 10], and they appear in more general contexts than the
1:1 resonance of the present case. We shall come to this point later.

To have a physical insight into K, and to show that this constant of motion is actually
in involution with the classical Hamiltonian, consider the number operator n̂. Writing it in
a symmetrized form n̂ = ∑

α

(
b†

αbα + bαb
†
α − 1

)/
2 = n. Using Heisenberg correspondence

relations, equations (2), it is straightforward to obtain n = I1 + I2 −1 = K −1. Therefore, the
polyad K corresponds to n + 1, which is identical to N, the dimension of Hilbert space in the
quantum case. Since n can be arbitrarily fixed (independently of the excitation energy), it is
obviously in involution with the classical Hamiltonian. This can also be checked by verifying
that the Poisson bracket {K,H } vanishes. Since we have two independent integrals of motion
in involution, H ′ and K, and the system has two degrees of freedom, we have proved that the
Hamiltonian H is integrable in the sense of Liouville [12]. We emphasize that no assumptions
have been made on the specific values of the parameters εα and vα,β;γ,δ . This implies that the
property of integrability holds for all choices.

One may ask whether the system investigated so far is a special case or is it significantly
different from those already known: the Lipkin model, the pairing interaction, or the new
Hamiltonians which have been recently found to be exactly solvable [5, 6]. To clarify this, we
emphasize the general character of the (spinless) two-body interaction of equation (1). This
is to be contrasted with the pairing type of interaction (seniority conserving) of the above-
mentioned models. This is clear from the absolute freedom to specify the parameters defining
the interaction, while the other models only depend on one parameter. Yet, there is a formal
analogy with the Lipkin model (degenerate fermions distributed on two degenerate levels) and
our two-level interacting boson system. As we shall proceed to show, we can actually allow
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modifications on the type of interaction, and prove integrability in systems interacting through
k-body forces, and in systems that do not conserve the number of particles.

Consider first the general k-body interaction on a two-level boson system that conserves
the number of particles. The contribution of rank r is a linear combination (on the labels s and
t below) of terms proportional to

(
b
†
1

)s(
b
†
2

)r−s
(b1)

t (b2)
r−t . (8)

Here, s denotes the number of bosons that are created in the first level and t the number of
bosons that are annihilated from it (r − s are created and r − t are destroyed in the second
one). Note that the number of parameters that define the model increases quadratically with
k. Proceeding as before, namely symmetrizing the k-body Hamiltonian and using Heisenberg
correspondence relations, it is straightforward to show that the dependence upon the classical
angles φ1 and φ2 will be only through terms of the form cos[(s − t)(φ1 − φ2)]. These terms
display the same invariance with respect to translations of the angles, and therefore K = I1 +I2

will also be an independent constant of motion.
The above generalization to the general k-body interaction exploits the occurrence of the

1:1 resonance mentioned above, that is, that the angles φ1 and φ2 appear in the Hamiltonian
only as a function of φ1 − φ2. More general situations can be considered, and integrability
can be proved in the same way if the interaction terms are such that they define at most
one resonance. Such interaction terms appear, e.g., in algebraic Hamiltonians in molecular
physics and in the context of laser-induced excitations. We therefore consider Hamiltonians
constructed as a linear combination (on the labels s and t) of terms h

(k)
st given by

ĥ
(k)

st = vs,t

(
b
†
1

)ps(
b
†
2

)q(k−s)
(b1)

pt (b2)
q(k−t) (9)

with p and q non-equal, and s, t = 0, . . . , k. The parameters vs,t are only restricted to
guarantee Hermiticity of the Hamiltonian (v∗

t,s = vs,t ). Obviously, this type of interaction
does not commute with the particle number operator n̂ (unless p = q), and consequently the
number of particles is not conserved. For this interaction the angle variables appear in the
classical Hamiltonian only as a function of pφ1 − qφ2. Ignoring zero-point corrections which
are not relevant now, the classical conserved quantity is K = qI1 + pI2, and its quantum
counterpart corresponds to the operator K̂ = qb

†
1b1 + pb

†
2b2. It can be readily checked that

the commutators
[
K̂, ĥ

(k)
st

]
and the Poisson brackets

{
K,h

(k)
st

}
vanish.

These results, in particular for the particle-conserving k-body interaction, can be
understood from an algebraic point of view. Indeed, a convenient quantum-mechanical
treatment of the k-body interacting two-level boson model exploits the SU(2) algebra structure
of the problem, in analogy with the Lipkin model [13]. The Hamiltonian is written as a
polynomial of the angular momentum operators whose degree depends on k, and is worked out
in the usual basis |j,m〉. This crucially depends on the conservation of the number of particles:
the square of the total angular momentum is related to the number of bosons by J 2 = j (j + 1),
with j = n/2. Therefore, the classical motion takes place in the space of angular momentum
on the sphere of radius j (j + 1), where the precise trajectory is determined by intersecting
the surface induced by the Hamiltonian. For the case k = 2, this corresponds to Poinsot’s
construction [14]. From this perspective, the models that do not conserve the particle number,
equation (9), are interesting. In terms of Poinsot’s construction, the trajectories of the system
are determined by the ellipsoid associated with the conserved quantity K̂ = qb

†
1b1 + pb

†
2b2

and the surface generated by the Hamiltonian. This, and the usual quantum treatment of the
problem, suggest that the algebraic structure of the problem is SU(2) as for the particle-number
conserving case. We have been unable to explicitly construct the generators of the algebra for
this case.
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Figure 1. Two examples of the phase-space structure for distinct sets of parameters vα,β;γ,δ in the
Hamiltonian (1). Both cases correspond to k = 2 and n = 20.

Applications of the above results are the following. First, all particle-conserving
k-body interactions acting on a two-level boson system are integrable. Therefore, all
particle-conserving models for two-component BEC at zero temperature are integrable.
These include (for k = 2) the symmetric models usually considered, any non-symmetric
couplings, and any perturbation (in particular with k > 2) that conserves the particle number.
Note that the parameters of the model do influence the structure of the classical phase space
(see figure 1). Secondly, the atom–molecule BEC described by Hamiltonians of the type of
equation (9) [15] are integrable. However, generic perturbations may destroy the integrability,
since such perturbations may not commute with the conserved quantity K̂ = qb

†
1b1 + pb

†
2b2.

For example, adding a generic non-diagonal particle-conserving perturbation to equation (9)
destroys integrability. Physically, this implies that the two-component and the atom–molecule
BEC behave differently under generic perturbations. (Incidentally, this shows that the systems
under consideration have two degrees of freedom.) Integrability implies, at the classical level,
that the motion is periodic or quasi-periodic. Hence, in the semiclassical limit the evolution of
a generic initial state will display oscillations in the occupation number of each single-particle
level. These oscillations are nonlinear, i.e. their period depends on the energy of the initial state.

At the quantum level and fixing the polyad number K̂, the system effectively becomes a
one-degree-of-freedom system. Therefore, the spectrum corresponds to the superposition of
sequences of one-dimensional nonlinear systems. Each sequence is associated with a locally
stable fixed point of the classical phase space (by EBK quantization). These facts provide
a semiclassical explanation of the unexpected results reported in [16], obtained in the dense
limit (n � l and k is fixed) for the k-body embedded ensembles of random matrices for bosons
[16, 17]. The ensemble is defined for k = 2 by (1) choosing the real coefficients vα,β;γ,δ

(ε1 = ε2 = 0) as the independent matrix elements of the Gaussian orthogonal ensemble [18].
Each member of the ensemble is associated with a specific classical system. Different choices
of these coefficients will generically lead to topologically different structures in phase space;
this accounts for the non-ergodic behaviour of the ensemble. Figure 1 illustrates the structure
of the reduced phase space for fixed n and two distinct sets of coefficients. The ensemble
is therefore integrable and the fluctuation properties of the spectrum of individual members
of the ensemble correspond to those of a picket-fence spectrum after unfolding. The sudden
localization in Fock space of certain excited states can be understood likewise.

Summarizing, we have shown that a broad class of generic two-level boson systems is
integrable independently of the specific values of the parameters that define the interaction.



L222 Letter to the Editor

These systems are two-degrees-of-freedom systems. The interaction is such that it either
conserves the number of particles or conserves a rational linear combination of the number of
particles occupying each level. The important property that leads to integrability resides in
the fact that classically these systems display at most one resonance. Integrability is destroyed
generically by perturbations which allow other independent resonances to appear in phase
space.
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